A perfluoroaromatic abiotic analog of H2 relaxin enabled by rapid flow-based peptide synthesis.

نویسندگان

  • Tessa Lühmann
  • Surin K Mong
  • Mark D Simon
  • Lorenz Meinel
  • Bradley L Pentelute
چکیده

H2 relaxin is a pleiotropic peptide hormone with clinical potential. Here we report on the reaction and use of hexafluorobenzene as an intramolecular disulfide replacement between Cys10 and Cys15 in the A-chain of H2 relaxin. Using flow-based Fmoc solid-phase peptide synthesis methodology we were able to obtain high-quality H2 relaxin fragments that were previously reported as challenging to synthesize. Subsequent native chemical ligation and oxidative folding enabled total synthesis of both wild type H2 relaxin and a C6F4 linked analog. Cell-based activity assays revealed modest activity for the C6F4 linked H2 relaxin analog, albeit 100-fold reduced relative to wild type. This work demonstrates how perfluoroarylation-cysteine SNAr chemistry may be a useful tool for the selective replacement of native disulfide bonds in proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The minimal active structure of human relaxin-2.

H2 relaxin is a peptide hormone associated with a number of therapeutically relevant physiological effects, including regulation of collagen metabolism and multiple vascular control pathways. It is currently in phase III clinical trials for the treatment of acute heart failure due to its ability to induce vasodilation and influence renal function. It comprises 53 amino acids and is characterize...

متن کامل

Preparation of canine relaxin by Fmoc-solid phase synthesis and regioselective disulfide bond formation within the A- and B-chains

Background: The chemical synthesis of multi-disulfide bonded heterodimeric peptides such as insulin has long been of significant scientific and commercial interest as well as a major challenge. The development of improved protocols which includes regioselective disulfide bond formation has greatly advanced the capacity to prepare and study insulin-like peptides including canine relaxin, an impo...

متن کامل

Synthesis of fluorescent analogs of relaxin family peptides and their preliminary in vitro and in vivo characterization

Relaxin, a heterodimeric polypeptide hormone, is a key regulator of collagen metabolism and multiple vascular control pathways in humans and rodents. Its actions are mediated via its cognate G-protein-coupled receptor, RXFP1 although it also "pharmacologically" activates RXFP2, the receptor for the related, insulin-like peptide 3 (INSL3), which has specific actions on reproduction and bone meta...

متن کامل

Synthetic Covalently Linked Dimeric Form of H2 Relaxin Retains Native RXFP1 Activity and Has Improved In Vitro Serum Stability

Human (H2) relaxin is a two-chain peptide member of the insulin superfamily and possesses potent pleiotropic roles including regulation of connective tissue remodeling and systemic and renal vasodilation. These effects are mediated through interaction with its cognate G-protein-coupled receptor, RXFP1. H2 relaxin recently passed Phase III clinical trials for the treatment of congestive heart fa...

متن کامل

Analog of H2 relaxin exhibits antagonistic properties and impairs prostate tumor growth.

Hormone antagonists can be effective tools to delineate receptor signaling pathways and their resulting downstream physiological actions. Mutation of the receptor binding domain (RBD) of human H2 relaxin (deltaH2) impaired its biological function as measured by cAMP signaling. In a competition assay, deltaH2 exhibited antagonistic activity by blocking recombinant H2 relaxin from binding to rece...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Organic & biomolecular chemistry

دوره 14 13  شماره 

صفحات  -

تاریخ انتشار 2016